Relations between the scaling exponents, entropies, and energies of fracture networks

Author:

Guđmundsson Agust1,Mohajeri Nahid2

Affiliation:

1. Department of Earth Sciences, University of London Royal Holloway, Egham TW20 0EX, UK. Fax: +44-1784-471-780. a.gudmundsson@es.rhul.ac.uk.

2. Department of Geography, University College London, Gower Street, Pearson Building, London, WC1E 6BT, UK

Abstract

Abstract Fracture networks commonly show power-law length distributions. Thermodynamic principles form the basis for understanding fracture initiation and growth, but have not been easily related to the power-law size distributions. Here we present the power-law scaling exponents and the calculated entropies of fracture networks from the Holocene part of the plate boundary in Iceland. The total number of tension fractures and normal faults used in these calculations is 565 and they range in length by five orders of magnitude. Each network can be divided into populations based on ‘breaks’ (abrupt changes) in the scaling exponents. The breaks, we suggest, are related to the comparatively long and deep fractures changing from tension fractures into normal faults and penetrating the contacts between the Holocene lava flows and the underlying and mechanically different Quaternary rocks. The results show a strong linear correlation (r = 0.84) between the population scaling exponents and entropies. The correlation is partly explained by the entropy (and the scaling exponent) varying positively with the arithmetic average and the length range (the difference between the longest and the shortest fracture) of the populations in each network. We show that similar scaling laws apply to other lineaments, such as streets. We propose that the power-law size distributions of fractures are a consequence of energy requirements for fracture growth.

Publisher

EDP Sciences

Subject

Geology

Reference48 articles.

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3