Affiliation:
1. School of Civil Engineering and Architecture Southwest University of Science and Technology Mianyang 621010 China swust.edu.cn
2. State Key Laboratory of Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan 430071 China cas.cn
3. Research Institute of Petroleum Exploration & Development-Northwest (NWGI) PetroChina Lanzhou 730020 China petrochina.com.cn
Abstract
Abstract
Accurate determination of petrophysical and fluid transporting properties of rocks is essential for many engineering applications. In this paper, microcomputed tomography (CT) imaging technique is adopted to image the microstructure of tight sandstones drilled from Chang-7 member in Yanchang Formation. The pore geometry, pore-throat size distribution, pore connectivity, and tortuosity of the pore-throat structure are quantitatively characterized by extracting the pore network model (PNM). Direct numerical simulation (DNS) approach is applied on the segmented CT images to investigate the anisotropic permeability of tight sandstones. In addition, the unstructured mesh model of the pore space is reconstructed, and the pore scale immiscible two-phase flow is simulated by computational fluid dynamics (CFD) using the volume of fluid (VOF) model. The results indicate that the pore-throat system of tight sandstone reservoirs is mainly composed of discontinuous intergranular pores and grain margin microfractures with poor connectivity and diverse pore morphology. The two-phase flow simulations indicate that the strong heterogeneity of pore-throat structure can lead to obvious fingering phenomenon of the injected fluid, which reduces the sweep efficiency and the oil recovery as well. The residual fluids are mainly trapped in tiny throats and dead-end pores. It is found that the digital rock analysis based on CT imaging can be a cost-effective and time-saving alternative to routine core analysis of tight sandstone reservoirs.
Funder
National Natural Science Foundation of China
Natural Science Foundation of SWUST
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献