Comprehensive Investigation of the Petrophysical and Two-Phase Flow Properties of the Tight Sandstone in Yanchang Formation, Ordos Basin, China: Insights from Computed Tomography Imaging and Pore Scale Modelling

Author:

Wang Yao12ORCID,Song Rui2ORCID,Liu Jianjun2ORCID,Qin Min1,Zheng Zhao1,Qin Yang3

Affiliation:

1. School of Civil Engineering and Architecture Southwest University of Science and Technology Mianyang 621010 China swust.edu.cn

2. State Key Laboratory of Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics Chinese Academy of Sciences Wuhan 430071 China cas.cn

3. Research Institute of Petroleum Exploration & Development-Northwest (NWGI) PetroChina Lanzhou 730020 China petrochina.com.cn

Abstract

Abstract Accurate determination of petrophysical and fluid transporting properties of rocks is essential for many engineering applications. In this paper, microcomputed tomography (CT) imaging technique is adopted to image the microstructure of tight sandstones drilled from Chang-7 member in Yanchang Formation. The pore geometry, pore-throat size distribution, pore connectivity, and tortuosity of the pore-throat structure are quantitatively characterized by extracting the pore network model (PNM). Direct numerical simulation (DNS) approach is applied on the segmented CT images to investigate the anisotropic permeability of tight sandstones. In addition, the unstructured mesh model of the pore space is reconstructed, and the pore scale immiscible two-phase flow is simulated by computational fluid dynamics (CFD) using the volume of fluid (VOF) model. The results indicate that the pore-throat system of tight sandstone reservoirs is mainly composed of discontinuous intergranular pores and grain margin microfractures with poor connectivity and diverse pore morphology. The two-phase flow simulations indicate that the strong heterogeneity of pore-throat structure can lead to obvious fingering phenomenon of the injected fluid, which reduces the sweep efficiency and the oil recovery as well. The residual fluids are mainly trapped in tiny throats and dead-end pores. It is found that the digital rock analysis based on CT imaging can be a cost-effective and time-saving alternative to routine core analysis of tight sandstone reservoirs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of SWUST

Publisher

GeoScienceWorld

Subject

Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3