A Hybrid Method for UXO vs. Non-UXO Discrimination

Author:

Kappler Karl N.1,Gasperikova Erika1

Affiliation:

1. Earth Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA, USA 94720

Abstract

Remediation of sites contaminated by unexploded ordnance is complicated by the problem of discriminating between buried conductors that are intact munitions and those that are harmless scrap metal. Here we present two distinct approaches of object discrimination, both of which rely on training data in the form of polarizability curves. These curves show remarkable similarity for same-type objects over a broad range of depths and attitudes, but marked differences when comparing curves from different object types. The first method, called the “voting scheme,” compares field data polarizabilities against templates in a series of cross validations. The second method applies Bayesian statistics on features extracted from the polarizabilities. Here the methods are applied to a 346 element dataset. The voting scheme misclassified fewer UXO objects, but at a cost of more false digs. A hybrid technique combining both methods generates an ordered dig list that ensures efficient use of cleanup resources. For the dataset considered here, the hybrid method identifies over 80% of UXO before the first hole containing scrap metal is dug, with only 7 false digs before all 219 UXO are excavated.

Publisher

Environmental and Engineering Geophysical Society

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3