Lithospheric Structure of the Central Andes Forearc from Gravity Data Modeling: Implication for Plate Coupling

Author:

Gushurst Greg1ORCID,Mahatsente Rezene1ORCID

Affiliation:

1. Dept. of Geological Sciences The University of Alabama Tuscaloosa AL 35487 USA ua.edu

Abstract

Abstract Geodetic and seismological data indicates that the Central Andes subduction zone is highly coupled. To understand the plate locking mechanism within the Central Andes, we developed 2.5-D gravity models of the lithosphere and assessed the region’s isostatic state. The densities within the gravity models are based on satellite and surface gravity data and constrained by previous tomographic studies. The gravity models indicate a high-density (~2940 kg m-3) forearc structure in the overriding South American continental lithosphere, which is higher than the average density of the continental crust. This structure produces an anomalous pressure (20-40 MPa) on the subducting Nazca plate, contributing to intraplate coupling within the Central Andes. The anomalous lithostatic pressure and buoyancy force may be controlling plate coupling and asperity generation in the Central Andes. The high-density forearc structure could be a batholith or ophiolite emplaced onto the continental crust. The isostatic state of the Central Andes and Nazca plate is assessed based on residual topography (difference between observed and isostatic topography). The West-Central Andes and Nazca ridge have ~0.78 km of residual topography, indicating undercompensation. The crustal thickness beneath the West-Central Andes may not be sufficient to isostatically support the observed topography. This residual topography may be partially supported by small-scale convective cells in the mantle wedge. The residual topography in the Nazca ridge may be attributed to density differences between the subducting Nazca slab and the Nazca ridge. The high density of the subducted Nazca slab has a downward buoyancy force, while the less dense Nazca ridge provides an upward buoyancy force. These two forces may effectively raise the Nazca ridge to its current-day elevation.

Funder

University of Alabama

Publisher

GeoScienceWorld

Subject

Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3