Synthesis, Characterization, and Performance Evaluation of Starch-Based Degradable Temporary Plugging Agent for Environmentally Friendly Drilling Fluid

Author:

Gong Wuzhen123ORCID,Huang Weian123ORCID,Liu Jian4,Zhang Jiaqi5,Yv Ting123,Jiang Lin123,Wang Zengbao123

Affiliation:

1. Shandong Key Laboratory of Oilfield Chemistry School of Petroleum Engineering China University of Petroleum (East China) Qingdao 266580 China cup.edu.cn

2. Key Laboratory of Unconventional Oil & Gas Development China University of Petroleum (East China) Qingdao 266580 China cup.edu.cn

3. School of Petroleum Engineering China University of Petroleum (East China) Qingdao Shandong 266580 China cup.edu.cn

4. China Petroleum Western Drilling Engineering Co. Ltd. Urumqi XinJiang 830011 China

5. CNPC Engineering Technology R&D Company Limited Beijing 102206 China

Abstract

Abstract Reservoir protection in well drilling and well completion is one of the most significant challenges that have been connected with the quality of the temporary plugging zone and the recovery value of the reservoir permeability when the foreign water invaded into the reservoir copied with the temporary plugging agents. The regular temporary plugging agents are linked with high demand for the matching rate about the pore throat of formation, effect of a single, and poor environmental performance, etc. which markedly impact the operational efficiency. This work reports the synthesis and characteristic of starch-based degradable water-absorbent resin to protect the layer during drilling. Both degradable and excellent SDTA through introducing the nanometre calcium carbonate composites which used as the rigid core were synthesized, characterized, and revalued with standard methods. After purification, there were some groups including the carboxylic acid group, amide group, methyl group, and S=O which reflected the successful synthesis of the monomers. The composites displayed remarkable salt resistance and calcium resistance with 5% and 0.5% as well as thermal stability of 130°C and degradation rate of 50%, respectively. Results also demonstrated that SDTA composites could make the mud cake structure more compact and exhibit self-adaptive to the formation. The SEM images of mud cake treated SDTA revealed that the mechanism could be base on the collaborative action of the structure compact and holes plugging to form an impressive filter cake which could effectively avert the water molecules invasion into the reservoir. Hence, SDTA composites could be a suitable material as a degradable temporary plugging agent for well drilling and completion.

Funder

PCSIRT

National Science and Technology Major Project of China

National Natural Science Foundation of China

Publisher

GeoScienceWorld

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3