The Potential Cost and Cost-Effectiveness Impact of Using a Machine Learning Algorithm for Early Detection of Sepsis in Intensive Care Units in Sweden

Author:

Abstract

Background: Early diagnosis of sepsis has been shown to reduce treatment delays, increase appropriate care, and reduce mortality. The sepsis machine learning algorithm NAVOY® Sepsis, based on variables routinely collected at intensive care units (ICUs), has shown excellent predictive properties. However, the economic consequences of forecasting the onset of sepsis are unknown. Objectives: The potential cost and cost-effectiveness impact of a machine learning algorithm forecasting the onset of sepsis was estimated in an ICU setting. Methods: A health economic model has been developed to capture short-term and long-term consequences of sepsis. The model is based on findings from a randomized, prospective clinical evaluation of NAVOY® Sepsis and from literature sources. Modeling the relationship between time from sepsis onset to treatment and prevalence of septic shock and in-hospital mortality were of particular interest. The model base case assumes that the time to treatment coincides with the time to detection and that the algorithm predicts sepsis 3 hours prior to onset. Total costs include the costs of the prediction algorithm, days spent at the ICU and hospital ward, and long-term consequences. Costs are estimated for an average patient admitted to the ICU and for the healthcare system. The reference method is sepsis diagnosis in accordance with clinical practice. Results: In Sweden, the total cost per patient amounts to €16 436 and €16 512 for the algorithm and current practice arms, respectively, implying a potential cost saving per patient of €76. The largest cost saving is for the ICU stay, which is reduced by 0.16 days per patient (5860 ICU days for the healthcare sector) resulting in a cost saving of €1009 per ICU patient. Stochastic scenario analysis showed that NAVOY® Sepsis was a dominant treatment option in most scenarios and well below an established threshold of €20 000 per quality-adjusted life-year. A 3-hour faster detection implies a reduction in in-hospital mortality, resulting in 356 lives saved per year. Conclusions: A sepsis prediction algorithm such as NAVOY® Sepsis reduces the cost per ICU patient and will potentially have a substantial cost-saving and life-saving impact for ICU departments and the healthcare system.

Publisher

The Journal of Health Economics and Outcomes Research

Subject

Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3