Estimating the Prevalence of Opioid use Disorder in the Cincinnati Region using Probabilistic Multiplier Methods and Model Averaging

Author:

Mallow Peter J.1,Sathe Nila2,Topmiller Michael3,Chubinski Jennifer4,Carr Dillon1,Christopher Roni2

Affiliation:

1. Xavier University, Cincinnati, OH

2. Premier, Inc., Charlotte, NC

3. Premier, Inc., Charlotte, NC and 4American Academy of Family Physicians, Cincinnati, OH

4. Interact for Health, Cincinnati, OH

Abstract

Background: Opioid use disorder (OUD) and its consequences have strained the resources of health, social, and criminal justice services in the Cincinnati region. However, understanding of the potential number of people suffering from OUD is limited. Little robust and reliable information quantifies the prevalence and there is often great variation between individual estimates of prevalence. In other fields such as meteorology, finance, sports, and politics, model averaging is commonly employed to improve estimates and forecasts. The objective of this study was to apply a model averaging approach to estimate the number of individuals with OUD in the Cincinnati region. Methods: Three individual probabilistic simulation models were developed to estimate the number of OUD individuals in the Cincinnati Core Based Statistical Area (CBSA). The models used counts of overdose deaths, non-fatal overdoses, and treatment admissions as benchmark data. A systematic literature review was performed to obtain the multiplier data for each model. The three models were averaged to generate single estimate and confidence band of the prevalence of OUD. Results: This study estimated 15 067 (SE 1556) individuals with OUD in the Cincinnati CBSA (2 165 139 total population). Based on these results, we estimate the prevalence of OUD to be between 13 507 (0.62% of population) and 16 620 (0.77% of population). Conclusions: The method proposed herein has been shown in diverse fields to mitigate some of the uncertainty associated with reliance on a single model. Further, the simplicity of the method described is easily replicable by community health centers, first-responders, and social services to estimate capacity needs supported by OUD estimates for the region they serve.

Publisher

The Journal of Health Economics and Outcomes Research

Subject

Public Health, Environmental and Occupational Health,Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3