Research and Solution Proposals to Optimize Distribution Power Grids in Smart Grid Condition

Author:

PHAM Trung Son,NGUYEN Dinh Tien,NGUYEN Quang Thuan,DANG Quang Khoa

Abstract

Smart Grid is a concept for transforming the electric power grid by using advanced automaticcontrol and communications techniques and other forms of information technology. It integratesinnovative tools and technologies from: generation, transmission and distribution. This also includesconsumer appliances and equipment. This concept integrates energy infrastructure, processes, devices,information and markets into a coordinated and collaborative process. All allowing energy to be generated,distributed and consumed flexibly and efficiently. However, the Smart Grid with the integration ofdistributed generation itself also creates a several disadvantages. There can be problems with: stabilityand reliability, relay protection, isolation and operational isolation in which the problem is to create aburden on the distribution grid when transmitting electrical energy sources. Optimizing power flow andbringing high operating efficiency on Smart Grid conditions is an urgent issue. This paper focuses onresearching and proposing solutions for optimal calculation of power flow on Smart Grid. The paper hasresearched, and analyzed calculation solutions to optimize power flow and proposed to use the Lagrangemultiplier method. The study performed calculations for a typical Smart Grid model with three distributedgenerations. Calculation results have shown that the role of the method is to fully perform the optimalcalculation of the power flow on the grid. This is in order to reduce power loss and energy loss as well asincreasing operational efficiency while improving power quality in Smart Grid conditions.

Publisher

Polish Mineral Engineering Society

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3