Author:
NGUYEN Chi Thanh,NGUYEN Nghia Viet
Abstract
W artykule wykorzystano dwie metody przewidywania i obliczania powierzchni przodka tunelu po odpaleniu materiałów strzałowych.Pierwsza wykorzystuje model sztucznej sieci neuronowej (ANN), a druga – regresję wektora nośnego (SVR). Po zbudowaniu modeli predykcyjnych dla powierzchni przodka tunelu po przeprowadzeniu analizy obiema metodami porównano wyniki uzyskane i oceniono je przez porównanie pierwiastka średniokwadratowego błędu RMSE i współczynnika determinacji R2. Wartości RMSE i R2 modelu systemu sztucznej sieci neuronowej (ANN) otrzymano jako 0,1473 i 0,903 dla danych próbnych. Wartości te wynoszą 0,1497 i 0,9107 w testowanych zbiorach danych. W modelu SRV RMSE i R2 były równe odpowiednio do 0,1228 i 0,9331 w zbiorach danych próbnych oraz 0,1708 i 0,9055 w testowych zbiorach danych. Wyniki pozwoliły na postawienie wniosku, że sztuczną inteligencję wykorzystującą modele ANN i SVM można wykorzystać do przewidywania powierzchni przodka tunelu po zastosowaniu materiałów wybuchowych z dużą dokładnością.
Publisher
Polish Mineral Engineering Society
Subject
Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology