Prognozowanie pola przekroju poprzecznego tunelu po wykonaniu strzelania

Author:

NGUYEN Chi Thanh,NGUYEN Nghia Viet

Abstract

W artykule wykorzystano dwie metody przewidywania i obliczania powierzchni przodka tunelu po odpaleniu materiałów strzałowych.Pierwsza wykorzystuje model sztucznej sieci neuronowej (ANN), a druga – regresję wektora nośnego (SVR). Po zbudowaniu modeli predykcyjnych dla powierzchni przodka tunelu po przeprowadzeniu analizy obiema metodami porównano wyniki uzyskane i oceniono je przez porównanie pierwiastka średniokwadratowego błędu RMSE i współczynnika determinacji R2. Wartości RMSE i R2 modelu systemu sztucznej sieci neuronowej (ANN) otrzymano jako 0,1473 i 0,903 dla danych próbnych. Wartości te wynoszą 0,1497 i 0,9107 w testowanych zbiorach danych. W modelu SRV RMSE i R2 były równe odpowiednio do 0,1228 i 0,9331 w zbiorach danych próbnych oraz 0,1708 i 0,9055 w testowych zbiorach danych. Wyniki pozwoliły na postawienie wniosku, że sztuczną inteligencję wykorzystującą modele ANN i SVM można wykorzystać do przewidywania powierzchni przodka tunelu po zastosowaniu materiałów wybuchowych z dużą dokładnością.

Publisher

Polish Mineral Engineering Society

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3