Algorytmy uczenia maszynowego do wzbogacania danych: obiecujące rozwiązanie zwiększające dokładność przewidywania wibracji gruntu wywołanych wybuchem w kopalniach odkrywkowych

Author:

NGUYEN Hoang,BUI Xuan-Nam,DREBENSTEDT Carsten

Abstract

Problem drgań gruntu wywołanych pracami strzałowymi stanowi istotne wyzwanie środowiskowe w kopalniach odkrywkowych, wymagające precyzyjnych prognoz i środków kontroli. Chociaż modele sztucznej inteligencji i uczenia maszynowego są obiecujące w rozwiązaniu tego problemu, ich dokładność pozostaje znaczącym problemem ze względu na ograniczone zmienne wejściowe, rozmiar zbioru danych i potencjalny wpływ na środowisko. Aby złagodzić te wyzwania, zbieranie danych jawi się jako potencjalne rozwiązanie zwiększające skuteczność modeli uczenia maszynowego, nie tylko w przypadku drgań gruntów wywołanych wybuchami, ale także w różnych dziedzinach przemysłu wydobywczego. W tym badaniu zbadano opłacalność wykorzystania maszynowego uczenia się w celu gromadzenia danych w celu wygenerowania rozszerzonego zbioru danych, który zapewnia lepsze przewidywanie drgań gruntu wywołanych pracami strzałowymi. Wykorzystując metodę wektorów nośnych (support vector machine - SVM), opisujemy zależności między zmiennymi wejściowymi, aby następnie zintegrować je jako dodatkowe dane wejściowe. Następnie wykorzystuje się wzbogacony zbiór danych do konstruowania wielu modeli uczenia maszynowego, w tym k-najbliższych sąsiadów (KNN), drzew klasyfikacji i regresji (CART) oraz losowy las (RF), wszystkie zaprojektowane do przewidywania wibracji gruntu wywołanych wybuchem. Analiza porównawcza modeli wzbogaconych i ich oryginalne odpowiedniki, ustalone na początkowym zbiorze danych, stanowią podstawę do wnioskowania w celu optymalizacji wydajności.

Publisher

Polish Mineral Engineering Society

Subject

Geochemistry and Petrology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3