Inset-fed Multiband Square Patch Antenna on Flexible substrate for Fifth-Generation Wireless Communication

Author:

S. K. Sujata1,Aithal P. S.2

Affiliation:

1. Post-Doctoral Fellow, College of Engineering & Technology, Srinivas University, Mangalore, India

2. Faculty, College of Management & Commerce, Srinivas University, Mangalore, India

Abstract

Purpose: Over a decade, the antenna has sparked considerable interest in the 5G frequency band in the wireless domain (covering industrial applications, home automation and mobile communication) because of its numerous advantages like compact, conformal to surfaces, easily integrated with the devices, etc. In general, an Antenna can be defined as a conductor which is exposed to space operable for a specific application. The purpose of the study is to design the Slotted patch antenna for 5G applications on a flexible dielectric substrate material which makes the antenna compact in its design aspect. Design/Methodology/Approach: Initially, the antenna design is carried out using the theoretical framework based on the available equations. The microwave studio software - Computer Simulation Technology (CST) is used to create and model the different antennas. Findings/Result: Based on the simulated models, the slotted patch antenna design 5 has 2 bands namely: 3.25 GHz, the return loss is -17.47 dB, and 5.89GHz, the return loss is -21.37dB. Whereas design 6 has 4 resonant bands measured at 2.04 GHz, the return loss (RL) is -11.68 dB, at 5.80GHz, the RL is -22.36 dB, at 7.14 GHz, the RL is -28.71 dB and at 8.83 GHz, the RL is -13.36 dB. The maximum bandwidth achieved for slotted patch antenna design 5 is 5% and the maximum bandwidth achieved for slotted patch antenna design 6 is 8%. Whereas the design of Multi slotted patch antenna flexible substrate design 7 and design 8 has the maximum achieved bandwidth of 10 %. Originality/Value: The design of slotted patch and multi slotted patch antenna using inset feed method on a flexible substrate for 5G frequency band. Paper Type: Design based Research Analysis.

Publisher

Srinivas University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3