Crude Oil Price Prediction Based on Soft Computing Model: Case Study of Iraq

Author:

Ali Saad Hassan,Ali Abdullah Hasan

Abstract

The prediction of the price of crude oil is important for economic, political, and industrial purposes in both crude oil importing and exporting countries. Fluctuations in oil prices can have a significant influence in many countries. Therefore, it is necessary to develop a suitable model that can accurately predict different economic and engineering parameters that are directly related to the price of crude oil. This paper proposes the use of a soft computing (SC) model which consists of a multi-layer perceptron neural network (MLP-NN) for accurate predictions of future crude oil prices. The performance of the SC model proposed in this study was compared to that of other neural network approaches and found to perform better in the prediction of both monthly and daily crude oil prices, especially where there is a limited number of input data for model training and in situations of high parameter variability.

Publisher

Southwest Jiaotong University

Subject

Multidisciplinary

Reference16 articles.

1. KUMAR, M.S. (1992) The forecasting accuracy of crude oil futures prices. IMF Staff Papers, 39(2), pp. 432–461.

2. NAYEF, B.H., ABDULLAH, S.N.H.S., HUSSAIN, R.I., SAHRAN, S., ALMASRI, A.H., ABDULLAH, N., NGAH, U.K., AZIZ, S.A., BACHE, K., LICHMAN, M., BATAINEH, B., ABDULLAH, S.N.H.S., OMAR, K., CHALABI, Z., BERRACHED, N., KHARCHOUCHE, N., GHELLEMALLAH, Y., MANSOUR, M., MOUHADJER, H., CHERIFI, D., DOGHMANE, M.Z., NAIT-ALI, A., AICI, Z., BOUZELHA, S., CLAUSI, D.A., COYNE, K., GAIKWAD, D.P., ABHANG, P., BEDEKAR, P., GOPAL, N.N., KARNAN, M., GRBOVIC, M., VUCETIC, S., HARALICK, R.M., SHANMUGAM, K., DINSTEIN, I.H., HOFFMAN, J.M., WANG, J.M., WEN, Y.Q., KHUWAJA, G.A., KIRSCH, E., HAMMER, B., VON ARX, G., KOHONEN, T., LAHMIRI, S., BOUKADOUM, M., MINGKUN, Y., WEI, Y., XIANGQIAN, Q., JUN, Q., ZHENYANG, L., WENFENG, F., OTSU, N., PREGENZER, M., PFURTSCHELLER, G., RAJARAJAN, A., RAJENDRAN, P., MADHESWARAN, M., SASIKALA, M., KUMARAVEL, N., SUBHASHINI, L., SHUBHANGI, D.C., HIREMATH, P.S., SOH, L.K., TSATSOULIS, C., XING, L., and PHAM, D.T. (2011) Neural Networks for Identification, Prediction and Control. Journal of Medical Sciences, 14(3), pp. 242-247.

3. REFENES, A.N., ZAPRANIS, A., and FRANCIS, G. (1994) Stock performance modeling using neural networks: A comparative study with regression models. Neural Networks, 7(2), pp. 375–388.

4. YASEEN, Z.M., EBTEHAJ, I., BONAKDARI, H., DEO, R.C., MEHR, A.D., MOHTAR, W.H.M.W., DIOP, L., EL-SHAFIE, A., and SINGH, V.P. (2017) Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. Journal of Hydrology, 554, pp. 263–276.

5. OMLIN, C.W., THORNBER, K.K., and GILES, C.L. (1998) Fuzzy finite-state automata can be deterministically encoded into recurrent neural networks. IEEE Transactions on Fuzzy Systems, 6(1), pp. 76-89.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3