Author:
Abbas Alaa Khudhair,Salih Ali Khalil,Hussein Harith A.,Hussein Qasim Mohammed,Abdulwahhab Saba Alaa
Abstract
Twitter social media data generally uses ambiguous text that can cause difficulty in identifying positive or negative sentiments. There are more than one billion social media messages that need to be stored in a proper database and processed correctly to analyze them. In this paper, an ensemble majority vote classifier to enhance sentiment classification performance and accuracy is proposed. The proposed classification model is combined with four classifiers, using varying techniques—naive Bayes, decision trees, multilayer perceptron and logistic regression—to form a single ensemble classifier. In addition to these, a comparison is drawn among the four classifiers to evaluate the performance of the individual classifiers. The result shows that in terms of an individual classifier, the naive Bayes classifier is optimal as compared to the others. However, for comparing the proposed ensemble majority vote classifier with the four individual classifiers, the result illustrates that the performance of the proposed classifier is better than the independent one.
Publisher
Southwest Jiaotong University
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献