Image Spam Detection Using Machine Learning and Natural Language Processing

Author:

Yaseen Yaseen Khather,Abbas Alaa Khudhair,Sana Ahmed M.

Abstract

Today, images are a part of communication between people. However, images are being used to share information by hiding and embedding messages within it, and images that are received through social media or emails can contain harmful content that users are not able to see and therefore not aware of. This paper presents a model for detecting spam on images. The model is a combination of optical character recognition, natural language processing, and the machine learning algorithm. Optical character recognition extracts the text from images, and natural language processing uses linguistics capabilities to detect and classify the language, to distinguish between normal text and slang language. The features for selected images are then extracted using the bag-of-words model, and the machine learning algorithm is run to detect any kind of spam that may be on it. Finally, the model can predict whether or not the image contains any harmful content. The results show that the proposed method using a combination of the machine learning algorithm, optical character recognition, and natural language processing provides high detection accuracy compared to using machine learning alone.

Publisher

Southwest Jiaotong University

Subject

Multidisciplinary

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3