Abstract
Introduction Chronic obstructive pulmonary disease is a systemic disease characterized not only by respiratory symptoms but also by physical deconditioning and muscle weakness. One prominent manifestation of this disease is the decline in respiratory muscle strength. Previous studies have linked the genotypes of insulin-like growth factor 1 and 2 (IGF-1 and IGF-2) to muscle weakness in other populations without this disease. However, there is a notable knowledge gap regarding the biological mechanisms underlying respiratory muscle weakness, particularly the role of IGF-1 and IGF-2 genotypes in this pulmonary disease. Therefore, this study aimed to investigate, for the first time, the association between IGF-1 and IGF-2 genotypes with respiratory muscle strength in individuals with chronic obstructive pulmonary disease. In addition, we analyzed the relationship between oxidative stress, chronic inflammation, and vitamin D with respiratory muscle strength. Methods A cross sectional study with 61 individuals with chronic obstructive pulmonary disease. Polymerase chain reaction of gene polymorphisms IGF-1 (rs35767) and IGF-2 (rs3213221) was analyzed. Other variables, related to oxidative stress, inflammation and Vitamin D were dosed from peripheral blood. Maximal inspiratory and expiratory pressure were measured. Results The genetic polymorphisms were associated with respiratory muscle strength ( 3.0 and 3.5; = 0.57). Specific genotypes of IGF-1 and IGF-2 presented lower maximal inspiratory and expiratory pressure (<0.05 for all). Oxidative stress, inflammatory biomarkers, and vitamin D were not associated with respiratory muscle strength. Conclusion The polymorphisms of IGF-1 and IGF-2 displayed stronger correlations with respiratory muscle strength compared to blood biomarkers in patients with chronic obstructive pulmonary disease. Specific genotypes of IGF-1 and IGF-2 were associated with reduced respiratory muscle strength in this population.
Publisher
Medwave Estudios Limitada