1. 1. Abad, C., Taylor, J., Sengul, C., Yurcik, W., Yuanyuan Zhou, & Rowe, K. (2003). Log correlation for intrusion detection: a proof of concept. 19th Annual Computer Security Applications Conference, 2003. Proceedings., 2003-Janua(Acsac), 255-264. https://doi.org/10.1109/CSAC.2003.1254330
2. 2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghemawat, S., Irving, G., Isard, M., & others. (2016). Tensorflow: A System for Large-Scale Machine Learning. Osdi, 16, 265-283.
3. 3. Agrawal, S., & Agrawal, J. (2015). Survey on anomaly detection using data mining techniques. Procedia Computer Science. https://doi.org/10.1016/j.procs.2015.08.220
4. 4. Ahmad, I, Swati, S. U., & Mohsin, S. (2007). Intrusions detection mechanism by resilient back propagation (RPROP). European Journal of Scientific Research, 17(4), 523-530. http://www.scopus.com/inward/record.url?eid=2-s2.0-34547863151&partnerID=40&md5=4a6eed8c0eef85943021c37f3884f783
5. 5. Ahmad, Iftikhar, Abdullah, A. B., Alghamdi, A. S., Baykara, N. a, & Mastorakis, N. E. (2009). Artificial neural network approaches to intrusion detection: a review. In Telecommunications and Informatics (pp. 200-205).