AN ANN MODEL FOR PREDICTING SLUMP OF CONCRETE CONTAINING CRUSHED GLASS AND NATURAL GRAVEL

Author:

Abbas Bala Alhaji1ORCID,Nurudeen Adisa Sulaimon2ORCID,Abubakar Jibrin3ORCID,Akorede Bello Abeeb4ORCID,Sodiq Alabi Alao2ORCID

Affiliation:

1. FUTMINNA

2. Federal University of Technology, Minna

3. Joseph Sarwuan Tarka University, Makurdi

4. Summit University, Offa

Abstract

This study modelled the slump of concrete containing crushed glass and Bida Natural Gravel (BNG) based on deep learning algorithm using the MATLAB neural network toolbox. A total of 240 (150mm × 150mm × 150mm) cubes were cast from 80 mixes generated randomly using Scheffe’s simplex lattice approach. Slump was measured for each of the experimental points of fresh concrete before filling in the moulds. The resulting batch for each mix was used as input data while the laboratory results for slump was used as output data for the ANN-model. Hence a shallow multilayer supervised Neural Network was developed to model these data. The developed model would be able to predict concrete slump containing 0% - 25% crushed glass as partial replacement for fine aggregate, water- cement ratio ranging from 0.45 – 0.65 and concrete grade M15 – M25. The architecture of the network contained 6 input parameters: water to cement ratio, water, cement, sand, crushed glass and BNG, 20 neurons in the hidden layer and slump in the outer layer. The adequacy of the developed model was measured using Mean Square Error (MSE) and Correlation Coefficient (R). Results showed that 6:20:1 model architecture for slump model had an MSE values for training, validation and testing as: 1.84e-2, 5.81e-3, 3.64e-3, 1.73e-3 respectively. Regression values for training, validation and testing are: 79%, 94%, 96% and 79%. The study concluded that a shallow multilayer Neural Network architecture with 20 neurons in the hidden layer is sufficient for predicting concrete slump.

Publisher

Usak University Journal of Engineering Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3