Groundwater flow numerical model to evaluate the water mass balance and flow patterns in Groundwater Circulation Wells (GCW) with varying aquifer parameters

Author:

Toscani Luca,Stefania Gennaro Alberto,Masut Edoardo,Prieto Melissa,Legnani Anna,Gigliuto Andrea,Ferioli Luca,Battaglia Alessandro

Abstract

Groundwater Circulation Wells (GCW) can be an effective in-situ remediation option allowing high mass recovery of contaminants in cases where contamination hotspots are located in saturated soil having low hydraulic conductivity. Traditional treatment options such as Pump&Treat, Air Sparging (AS)/Soil Vapor Extraction (SVE) and Multi Phase Extraction (MPE) typically require long operation times and significant costs for long-term plume management. GCWs induce meaningful changes in the groundwater flow introducing vertical flows both downward and upward, generating a “circulation cell”, which facilitates contaminant desorption from the soil. This study aims to understand the effects of a GCW on an aquifer in terms of both groundwater flow directions and water balance. A groundwater numerical model was built using MODFLOW-2005 to simulate the effect of the hydraulic parameters of the aquifer on the hydraulic circulation pattern of the GCW. The use of particle tracking simulated by MODPATH 7 showed the circulation cells and the impact on groundwater directions induced by different configurations of hydraulic parameters. The water flowing into the cell comes from both the injection well and the surrounding aquifer and the model shows how the hydraulic parameters of the aquifer, in particular the horizontal and vertical hydraulic conductivity, have a paramount influence in determining the shape and dimension of the circulation cell. A water mass balance analysis was carried out. It allowed to predict the groundwater flows exchanges between the GCW system and the surrounding aquifer, and to verify the sensitivity of the water budget to specific aquifer parameters. The results of this study are useful for further understanding the hydraulics of a GCW remediation system in order to support the design and to predict its performance.

Publisher

PAGEPress Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

Reference33 articles.

1. Alesi EJ, Brinnel P, Herding B, Hirschberger F, Sick MR, Stamm J (1991) In situ groundwater remediation of strippable contaminants by vacuum vaporizer wells (UVB): operation of the well and report about cleaned industrial sites. Third Forum on Innovative Hazardous Waste Treatment Technologies: Domestic and International, Dallas, TX.

2. Alesi EJ, Veluvali Laxmipathy P, Abad Gonzales A, Altschuh P, Kneer A, Nestler B (2018) Groundwater remediation – numerical models and experiments, Forschung Aktuell, Page 59-63.

3. Brandenburg JP (2020), Geologic Frameworks for Groundwater Flow Models. The Groundwater Project, Guelph, Ontario, Canada,

4. Berti D, Blumetti AM, Brustia E, Calca Terra S, Chiarolla D, Comerci V, Di Manna P, Gambino P, Guerrieri L, Iadanza C, Leoni G, Lu- Carini M, Niceforo D, Nisio S, Pompili R, Spizzichino D, Triglia A (2018) Pericolosità Geologiche “Geological Hazards” ISPRA-MIT.

5. Di Curzio D, Rotiroti M, Preziosi E (2022) Procedures for the environmental remediation of contaminated sites in Italy: food for thought from the Roundtable at Flowpath 2021 in Naples. Acque Sotterranee - Italian Journal of Groundwater, 11(1), 79–84. https://doi.org/10.7343/as-2022-562

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3