Preliminary identification of areas suitable for Sustainable Drainage Systems and Managed Aquifer Recharge to mitigate stormwater flooding phenomena in Rome (Italy)

Author:

Lentini Azzurra,Meddi Elisa,Galve Jorge Pedro,Papiccio Claudio,La Vigna Francesco

Abstract

This paper proposes a preliminary and large-scale survey methodology to identify areas suitable for indepth analysis for the application of Sustainable Drainage Systems and Managed Aquifer Recharge. These techniques are frequently applied to increase the natural infiltration capacity of water into the ground and their effectiveness depends on the local hydrogeological and morphological characteristics. The study area is the city of Rome where the aim is to mitigate the problems related to rainwater which, in case of extreme events, struggles to infiltrate into the ground, overloads the undersized drainage systems, and floods the urban space.The proposed method involves GIS geospatial analysis of the permeability of outcropping lithologies, the digital elevation model, and the piezometric levels of the aquifers. To identify the suitable zones, areas characterised by high permeability and a piezometric level that would confer a volumetric capacity to possibly store even large quantities of water, without triggering possible problems of water table rise, were identified. Data were divided into classes and indexed to compare and overlap them. Furthermore, the final result was compared with the urban flooding phenomena and the soil permeability map of Rome. The results of the performed analysis show that the preliminary suitable conditions to apply SuDS and MAR in Rome are widespread. The geological setting of the city is characterised by permeable lithologies in many places with an effective infiltration potential that would allow rainwater to infiltrate the subsoil and reach the first available aquifer.

Publisher

PAGEPress Publications

Subject

Geophysics,Geotechnical Engineering and Engineering Geology,Water Science and Technology,Environmental Chemistry,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3