Water quality aspects from Spanish sites to support managed aquifer recharge (MAR) guidelines not based on maximum allowable concentration standards

Author:

Fernandez-Escalante EnriqueORCID,Henao Casas José DavidORCID,Calero Gil Rodrigo

Abstract

Most countries that have technical guidelines or regulations for artificial recharge or managed aquifer recharge (MAR), that include water quality aspects are based on the establishment of standards or Maximum Allowable Concentrations (MACs) to regulate the quality of the water percolated or injected into an aquifer. The number of parameters in these guidelines vary considerably (from 6 in Spain to 156 in the USA) and often apply to all aquifers within administrative boundaries (e.g., national territory), regardless of the nature of the receiving medium, the depth of the water table, and other key factors. Eleven MAR systems in Spain have been studied (eight operational and three experimental, with limited number of data from three sites), characterising both, the recharge water quality and the water resulting from the interaction processes recharge water-soil-unsaturated zone-saturated zone of the aquifer. In all cases, an improved effect on groundwater quality is observed, even though some parameters in the recharge water don’t comply with the standards employed in some European countries, where this article focuses. The article suggests that regulating water quality for MAR through MACs at national level gives room for another alternative approach specific for each site. It might be recommendable to establish local standards at the regional or aquifer-wide level to better reflect the diversity of groundwater occurrence. As per the article, sectoral water authorities could receive more decision-making power on granting permits for MAR based on the quality of the hydrogeological and risk studies for each request. This would help reduce the application of the precautionary principle when in granting permission.

Publisher

PAGEPress Publications

Reference48 articles.

1. Amphos 21. 2016. Short report on the travel time between the infiltration ponds and the drinking water wells in el Port de la Selva. Status of September 22nd, 2016. Informative report.

2. Arizona State Legislature. 1994. Underground water storage, savings and replenishment.

3. ASCE. 2020. Standard Guidelines for Managed Aquifer Recharge; 69th ed.; American Society of Civil Engineers: Reston, VA, 2020; ISBN 978-0-7844-1528-3.

4. Baquero JC., De los Reyes MJ, Custodio E, et al. 2016. Groundwater Management in Mining: The Drainage and Reinjection System in Cobre Las Cruces, Spain. MESE 2:631–646. https://doi.org/10.15341/mese(2333-2581)/10.02.2016/001

5. Barberá JA, Jódar J, Custodio E, et al. 2018. Groundwater dynamics in a hydrologically-modified alpine watershed from an ancient managed recharge system (Sierra Nevada National Park, Southern Spain): Insights from hydrogeochemical and isotopic information. Science of the total environment 640–641:874–893. https://doi.org/10.1016/j.scitotenv.2018.05.305.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3