Exploring organo-bentonite adsorption properties for biphenyl removal from organic-aqueous media: kinetic study and industrial perspective

Author:

Gherdaoui Chems Eddine,Aldoori Hussam,Alaoui Chakib,Oumeddour Hanene,Taibi Zohra,Zeggai Nouh,Lerari Djahida,Maschke Ulrich

Abstract

Biphenyl, a frequently encountered and resilient compound in wastewater, proves resistant to conventional treatment methods because of its enduring nature. It forms the structural basis for persistent organic pollutants such as PCBs. In this study, we explored the adsorption of biphenyl in an organo-aqueous medium using both natural (Bent) and organomodified (CTAB-Bent) bentonite clay. Our objective was to highlight its potential for biphenyl wastewater treatment. We analyzed the physicochemical and textural properties of these clays through FTIR, XRF, XRD, SEM, BET method, and Zeta potential measurements. Impressively, these materials exhibited remarkable biphenyl adsorption capacity under acidic conditions, with Bent achieving 60% removal and CTAB-Bent an impressive 91%. We investigated the adsorption kinetics using first-order and pseudo-second-order models and assessed isotherm data with the Langmuir, Freundlich, and Langmuir-Freundlich (sips) equations. The Langmuir model, at pH 3, proved optimal, with high accuracy (R²) and minimal error (RMSE) values (0.997 and 1.20, respectively). Clay nature significantly influenced pollutant uptake efficiency, confirming the efficacy of the selected bio-based clay. We propose a protocol adaptable for industrial-scale applications.

Publisher

South Florida Publishing LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3