Gender Estimation with Parameters Obtained From the Upper Dental Arcade by Using Machine Learning Algorithms and Artificial Neural Networks

Author:

Erkartal Halil ŞabanORCID,Tatlı MelikeORCID,Secgin YusufORCID,Toy SeymaORCID,Duman Burak SuayipORCID

Abstract

Objective: The aim of this study is to estimate gender with parameters obtained from the upper dental arcade by using machine learning algorithms and artificial neural networks. Methods: The study was conducted on cone-beamed computed tomography images of 176 individuals between the ages of 18 and 55 who did not have any pathologies or surgical interventions in their upper dental arcade. The images obtained were transferred to RadiAnt DICOM Viewer program in Digital Imaging and Communications in Medicine format and all images were brought to orthogonal plane by applying 3D Curved Multiplanar Reconstruction. Length and curvature length measurements were performed on these images brought to orthogonal plane. The data obtained were used in machine learning algorithms (ML) and artificial neural networks input and rates of gender estimation were shown. Results: In the study, an accuracy ratio of 0.86 was found with ML models linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), logistic regression (LR) algorithm and an accuracy ratio of 0.86 was found with random forest (RF) algorithm. It was found with SHAP analyser of RF algorithm that the parameter of width at the level of 3rd molar teeth contributed the most to gender. An accuracy rate of 0.92 was found as a result of training for 500 times with multilayer perceptron classifier (MLCP), which is an artificial neural network (ANN) model. Conclusion: As a result of our study, it was found that the parameters obtained from the upper dental arcade showed a high accuracy in estimation of gender. In this context, we believe that the present study will make important contributions to forensic sciences.

Publisher

Pera Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3