Growth Performance and Metabolic Changes in Susceptible Mung Bean [Vigna radiata (L.) Wilczek] during Interaction with Rhizoctonia solani and Trichoderma virens

Author:

Inayati A.,Aini L.Q.,Yusnawan E.

Abstract

Background: Mung bean is susceptible to Rhizoctonia solani infection. Applications of beneficial microorganisms such as Trichoderma are promising for controlling pathogens and promoting plant growth. Methods: This study investigated growth performance and metabolic changes in mung bean seedlings during interaction with R. solani and Trichoderma virens using Gas Chromatography-Mass Spectrometry (GC-MS). Result: Mung bean infected by R. solani caused root rot and wilting. T. virens treatment reduced the disease severity in infected seedlings and promoted mung bean growth. Seventy-eight metabolites were identified in root extracts and dominated by sugars and fatty acids. The sugars, fatty acids and organic acids were significant metabolite groups that changed in response to pathogen infection and/or T. virens treatment. Five metabolic pathways particularly pyruvate metabolism, glyoxylate and dicarboxylate metabolism, sulfur metabolism, citrate cycle (TCA cycle) and phenylalanine, tyrosine and tryptophan biosynthesis altered significantly based on a metabolic pathway analysis. Acetic acid and aconitine had important roles in mung bean response to R. solani infection and/or T. virens treatment.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3