Genetic variability and diversity analysis for yield and its components in wheat (Triticum aestivum L.)

Author:

Arya Vichitra Kumar,Singh Jogendra,Kumar Lokendra,Kumar Rajendra,Kumar Punit,Chand Pooran

Abstract

Forty nine genotypes of wheat were studied for generating scientific information on nature and magnitude of genetic variability and diversity for designing breeding programme. The experiment was conducted in randomized complete block design in three replications. The data were recorded on days to 50% flowering, plant height, peduncle length, number of productive tillers per plant, days to maturity, spike length, number of spikelets per spike, number of grains per spike, 1000-grain weight, biological yield per plant, grain yield per plant, harvest index and gluten content. Analysis of variance revealed significant differences among the genotypes for all the characters under study. The highest estimates of phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) were observed for grain yield per plant. High heritability coupled with high genetic advance was observed for grain yield per plant. Based on D2 –Statistics, 49 genotypes were grouped into eight clusters. The highest inter-cluster distance was found between cluster VII and VIII followed by III and VII. This indicates that genotypes included in these clusters possess wide genetic diversity. Grain yield per plant (31.46%) showed highest contribution towards genetic divergence; therefore, this character was major determinant of genetic diversity. On the basis of divergence and cluster mean it may be suggested that maximum heterosis and good recombinants could be obtained in crosses between genotypes of cluster VIII, VII and III in varietal improvement programme. Thus, crosses between the genetically diverse genotypes of cluster VIII with genotypes HUW 655, HP 1937, DBW 88 and HD 3058 and cluster VII with genotypes like HP 1938, HUW 656, K1006, DBW83, DBW 84, K1004, UP2822 and NW5050 are expected to exhibit high heterosis and are also likely to produce new recombinants with desired traits.

Publisher

Agricultural Research Communication Center

Subject

Horticulture,Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3