Physiological Divergence in Green Gram [Vigna radiata (L.) Wilczek] Genotypes for Drought and High Temperature Stress Tolerance During Flowering Phase

Author:

Jincy M.,Prasad V. Babu Rajendra,Senthil A.,Jeyakumar P.,Manivannan N.

Abstract

Background: Drought and high temperature stress limits the crop production. Development of drought and high temperature tolerant cultivars that can withstand and yield better under adverse conditions is very much important to ensure the food and nutritional security. Green gram is one of the important pulse crops with high nutritional and economic value. Among the various stages of plant growth and development, reproductive stage is highly sensitive to drought and high temperature stress across all species. The main objective of this study was to evaluate green gram germplasm collection and identification of elite greengram genotypes that can withstand drought and high temperature stresses at reproductive stage. Methods: The experiment was conducted during March-April, 2019, at National Pulses Research Centre, Vamban, Pudukottai district, Tamil Nadu. To study the influence of combined drought and high temperature stress during reproductive stage, the green gram genotypes were sown in pots. Six pots were maintained for each genotype of which three were maintained at 100% field capacity (control) and for another three; drought stress (50% field capacity for 5 days) was imposed combined with high temperature stress (36 ± 2°C) during reproductive phase (35 Days after sowing). At the end of stress period, physiological and biochemical analysis were carried out to identify the tolerant green gram genotypes against drought and high temperature stresses.Result: In the present study, drought and high temperature stress has negative impact on green gram physiology. Among the genotypes screened for their tolerance at reproductive stage, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand drought and high temperature stress and maintain high total chlorophyll content, relative water content and chlorophyll stability index. These green gram gramplasm can be used in pulse breeding program to evolve resilient green gram varieties. Screening of 29 green gram genotypes for drought and high temperature stress during reproductive stage were carried out by maintaining the drought stress (50% field capacity for 5 days) combined with high temperature stress (36 ± 2°C) during reproductive stage (35 days after sowing) by pot culture experiment. Total chlorophyll, relative water content, chlorophyll stability index (CSI), oxidants and antioxidant activity were quantified to identify the tolerant green gram genotypes against drought and high temperature stresses. Based on physiological and biochemical parameters, the following green gram genotypes viz., TARM 1, VGG 15029, VGG 17003, VGG 17004, VGG 17006, VGG 17010 and VGG 17019 were found to withstand and tolerate combined drought and high temperature stresses at flowering stage.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3