Abstract
Background: Knowledge of the genetic diversity for various agronomic traits and their interaction with the environment and subsequent classification of genotypes will be beneficial for identification of divergent and stable sources of agronomic traits. Methods: A set of 96 groundnut germplasm accessions belonging to four botanical groups were evaluated for three years (2017 to 2019) for pod yield and component traits using AMMI analysis and subsequently accessions were classified based Euclidean cluster analysis. Result: Among different botanical groups, Virginia genotypes matured late and possessed high SPAD chlorophyll meter readings (SCMR) and pod yield compared to Spanish types. The component traits of pod maturity like days to flowering (first and 50%) showed low heritability and high genotype × environment interaction (GEI) and significant negatively affected sound mature kernel (SMK) and shelling per centage (SP). The cumulative contribution of environment and GEI component to the total variance was the highest in the expression of SP (67%) followed by days to maturity (54%) and days to 50% flowering (52%). Euclidean distance-based cluster analysis grouped the 96 accessions into five major clusters. Cluster I had accessions with higher pod yield, whereas cluster V contained accessions with low SLA, high SCMR and moderate pod yield. High yielding as well as stable accessions identified based on AMMI stability value (ASV) are NRCG 17332, 10076, 17268, 17197, 17108, 10106, 10089 and 17165. Trait specific as well as stable accessions identified in the present study can be useful donors for groundnut breeding programme.
Publisher
Agricultural Research Communication Center
Subject
Plant Science,Soil Science,Agronomy and Crop Science