Impact of Foliar Spray of NPK and Zn on Soybean for Growth, Yield, Quality, Energetics and Carbon Footprint under Dryland Condition at Indore

Author:

Bhayal Lalita,. Aakash,Jain M.P.,Bhayal Divya,Meena Kamlesh

Abstract

Background: Dryland is characterised by drought/dry spell (s) of 10 to 15 days and is the main reason for decline in soybean production. The aim of this study was to develop a strategy of drought amelioration by using foliar sprays and enhancement of yield, quality, energetics and carbon footprint. Methods: A field experiment was carried out at Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, College of Agriculture, Indore, (M.P.) during 2017-18 under spilt-plot design having two main plot treatments viz., foliar application at dry spell (F1), foliar application after dry spell (F2) and seven sub plot treatments i.e. different variants of foliar sprays (DVFS). Different growth, yield, quality, energetic and carbon footprint traits were recorded. The data were analyzed using standard statistical procedures. Result: The highest growth, yield, quality and energetic parameters were recorded for F1 as compared to F2. In case of DVFS, foliar application of water soluble complex fertilizer 19:19:19 (NPK) @ 0.5% + 0.5% ZnSO4 (T4) produced maximum values for growth, energetics, carbon footprint, oil (22.5%) and protein (43.1%) content as well as produced maximum yield.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3