Five Layered Optiprep based Density Gradient Model is a Promising Model for Enrichment of Viable X Chromosome Bearing Spermatozoa in Bubalus bubalis

Author:

Kumari Rajni,Batra Kanisht,Kumar Vinay,Kumar Aman,Nanda Trilok

Abstract

Background: A reliable method for controlling the sex of farm animals has the potential to revolutionize dairy farming. This can only be achieved by use of a method capable of separating X and Y chromosome bearing spermatozoa at lower cost and causing no significant damages to sperm viability. Realizing significance of buffaloes in Indian dairy farming, present study was aimed to develop appropriate density gradient model for enrichment of X chromosome bearing spermatozoa population in semen of Murrah buffalo bull. Methods: Density gradient centrifugation (DGC) technique was employed for enriching X chromosome spermatozoa in buffalo bull semen using four gradient media viz., Percoll, Optiprep, Ficoll and Sucrose. Percentage enrichment of X chromosome bearing spermatozoa in all the DGC models was determined by SYBR green based Real Time PCR. Result: Our investigations revealed that number of layers and centrifugation speed (g) factors in a density gradient centrifugation model, have significant effect on the percentage enrichment of X chromosome content in semen samples.Three layers, four layers and five layers density gradient centrifugation models showed significant differences (P less than 0.05) in the sex ratio towards X spermatozoa population in semen (61.72%±0.81, 64.55%±0.26 and 67.31±0.33%) respectively. Density gradient centrifugation models with centrifugation speed (g) 200x g and 300x g also showed significant differences (P less than 0.05) in the sex ratio towards X spermatozoa population in semen (66.36%±0.25 and 62.69±0.22%) respectively. Out of all DGC models, Optiprep density gradient model with 5 layers and centrifugation at 200xg (O3) yielded maximum enrichment (72.4%±1.38). In conclusion, O3 poses to be a promising model for enrichment of X spermatozoa in buffalo bull semen.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3