Prediction of First Lactation 305-day Milk Yield Based on Bimonthly Test Day Milk Yield Records in Murrah Buffaloes

Author:

Rana Ekta,Gupta Ashok Kumar,Singh Avtar,Ruhil Anand Prakash,Malhotra Ravinder,Yousuf Saleem,Ete Gedam

Abstract

The present study was conducted on 2100 first lactation bimonthly test day milk yield (BTDY) records of 350 Murrah buffaloes calved in between 1993 and 2017 at ICAR-NDRI, Karnal. A total of 6 BTDY records were taken from each animal at an interval of 60 days, from 6th day to 305th day of lactation. The prediction of First Lactation 305-Day Milk Yield (FL305DMY) was done by utilizing five conventional and machine learning methods viz., Centering Date Method (CDM), Test Interval Method (TIM), Ratio Method (RM), Multiple Linear Regression (MLR) and Artificial Neural Network (ANN). Error in prediction was estimated by absolute error, percentage absolute error, average error, percentage average error, Root Mean Square Error (RMSE) and percentage RMSE. MLR was found to be the best method with the least error in prediction (5.71% RMSE), followed by ANN (5.77% RMSE). The accuracy (R2) of MLR equation including all 6 BTDY records was 91.86%. The best MLR equation for an early prediction of FL305DMY included 3 BTDY records viz., BTDY-2 (65th day), BTDY-3 (125th day) and BTDY-4 (185th day) with 85.29% R2. The study compared the conventional and computational methods for prediction of first lactation milk yield which could be used for early selection of the animals.

Publisher

Agricultural Research Communication Center

Subject

General Veterinary,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3