Computational assessment of polymorphism with linkage disequilibrium and hotspots of recombination in pathogenic genes of Fusarium oxysporum f. sp. lycopersici

Author:

Dixit Supriya,Srivastava Mukesh,Katara Pramod

Abstract

Linkage disequilibrium and recombination rate analysis are the major aspects to study association between nucleotide variations. Species of Fusarium oxysporum includes extensive group of soil and plant pathogens which causes vascular wilt and root diseases to wide range of agricultural crops. Further F. oxysporum is divided into more than 120 formea species (f.sp.) depending upon their hosts. Among all formea species, Fusarium oxysporum f. sp. lycopersici (Fol) is well known pathogen which infects tomato plants and leads towards a destructive disease i.e. “Fusarium wilt”. Our study is focused to analyse association based linkage disequilibrium pattern and recombination rate in five genes of interest for causing pathogenicity in both, plants as well as humans. The fmk1 gene has the highest average nucleotide diversity (ð) value (0.66) and lowest was found in fpr1 (0.54) whereas calculation of average number of nucleotide variation per site showed that gene fpr1 (765) to be highly variating gene and fmk1 (121) to be lowest variating gene. Further, LD analysis all polymorphic sites were considered except those sites which were segregating for three or four nucleotides. LD was calculated in terms of ZnS and variations indicate the success of linkage study and minimum number of recombination event identified in terms of Rm. Through observation it is concluded that the low nucleotide diversity was there, due to the presence of high number of repeated variable nucleotides in sequence because the current estimated LD suggests that it does not extend beyond a few hundreds of base pair.

Publisher

Agricultural Research Communication Center

Subject

Plant Science,Soil Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3