FUZZY MODEL OF THE OPERATIONAL POTENTIAL CONSUMPTION PROCESS OF A COMPLEX TECHNICAL SYSTEM

Author:

Pająk MichałORCID

Abstract

During the operation process of a system its technical state is changed. The changes take place because of the wearing factors impact. The impact depends on the flow and intensity of the operation process what is characterized by the time histories of the working parameters. Simultaneously, the changes of the technical state are correlated with the changes of the amount of the operational potential included in a system. In order to avoid the inability state occurrence the amount of this potential should be higher than the boundary value. The amount of the operational potential included in a system is determined by the values of the cardinal features of it but in the case of the real technical system the values cannot always be measured. Therefore, the amount of the operational potential and the technical state of the system cannot always be determined online. To solve this problem the model of the operational potential consumption process was created and presented in the paper. The model uses artificial intelligence techniques to calculate the change of the operational potential amount by determining the changes of the cardinal features of the system on the basis of the time histories of the working parameters. The verification of the model quality was performed using the pulverized boiler OP-650k-040 operating in the power plant. The description of the conducted research and the results of the verification were presented in the end of the paper proving the adequacy of the model implementation in the case of industrial objects.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3