NOVEL METHODOLOGY FOR REAL-TIME STRUCTURAL ANALYSIS ASSISTANCE IN CUSTOM PRODUCT DESIGN

Author:

Zdravković MilanORCID,Korunović Nikola

Abstract

Mass-customization is related to optimizing the balance between flexibility, strongly required by the customer-focused industries and manufacturing efficiency, which is critical for market competitiveness. In the conventional industries, the process of designing, validating and manufacturing a product is long and expensive. Some of the common approaches for addressing those issues are parametric product modeling and Finite Element Analysis (FEA). However, the costs involved are still relatively high because of the very special expertise needed and the cost of the specialized software. Also, the specific design of the product cannot be validated in a real-time, which often leads to making hard compromises between the specific customer requirements and the structural properties of the product in its exploitation. In this paper, we propose the novel methodology for real-time structural analysis assistance for custom product design. We introduce the concept of so-called compiled FEA model, a Machine Learning (ML) model, consisting of dataset of characteristic product parameters and associated physical quantities and properties, selected ML algorithms and the sets of associated hyperparameters. A case study of creating a compiled FEA model for the case of internal orthopedic fixator is provided.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3