DYNAMICAL CONTACT PARAMETER IDENTIFICATION OF SPINDLE-HOLDER-TOOL ASSEMBLIES USING SOFT COMPUTING TECHNIQUES

Author:

Čiča Đorđe,Zeljković Milan,Tešić Saša

Abstract

In industry, the capability to predict the tool point frequency response function (FRF) is an essential matter in order to ensure the stability of cutting processes. Fast and accurate identification of contact parameters in spindle-holder-tool assemblies is very important issue in machining dynamics analysis. This work is an attempt to illustrate the utility of soft computing techniques in identification and prediction contact parameters of spindle-holder-tool assemblies. In this paper, three soft computing techniques, namely, genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO) were used for identification of contact dynamics in spindle-holder-tool assemblies. In order to verify the proposed identification approaches, numerical and experimental analysis of the spindle-holder-tool assembly was carried out and the results are presented. Finally, a model based on the adaptive neural fuzzy inference system (ANFIS) was used to predict the dynamical contact parameters at the holder-tool interface of a spindle-holder-tool assembly. Accuracy and performance of the ANFIS model has been found to be satisfactory while validated with experimental results.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3