Author:
Krueger Eddy,Scheeren Eduardo M.,Rinaldin Carla Daniele Pacheco,Lazzaretti André E.,Neves Eduardo Borba,Nogueira-Neto Guilherme Nunes,Nohama Percy
Abstract
Surface mechanography (MMG) is a non-invasive technique that captures signs of low-frequency vibrations of skeletal muscles through the skin. However, subcutaneous structures may interfere with the acquisition of MMG signals. The objective of this study was to verify the influence of skinfold thickness (ST) on the MMG wavelet-based signal in the rectus femoris muscle during maximal voluntary contraction in two groups of individuals: group I (n = 10, ST <10 mm ) and group II (n = 10, ST equal to or> 20 mm). Negative correlation was observed between the 19 Hz, 28 Hz and 39 Hz frequency bands with ST. There was a statistical difference in almost all frequency bands, especially in the X and Y axes. All MMG axes in group II presented higher magnitudes in frequency bands 2 and 6 Hz (like low-pass filter). Thus, these results can be applied to calibrate MMG responses as biofeedback systems.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献