IMPACT OF SKINFOLD THICKNESS ON WAVELET-BASED MECHANOMYOGRAPHIC SIGNAL

Author:

Krueger Eddy,Scheeren Eduardo M.,Rinaldin Carla Daniele Pacheco,Lazzaretti André E.,Neves Eduardo Borba,Nogueira-Neto Guilherme Nunes,Nohama Percy

Abstract

Surface mechanography (MMG) is a non-invasive technique that captures signs of low-frequency vibrations of skeletal muscles through the skin. However, subcutaneous structures may interfere with the acquisition of MMG signals. The objective of this study was to verify the influence of skinfold thickness (ST) on the MMG wavelet-based signal in the rectus femoris muscle during maximal voluntary contraction in two groups of individuals: group I (n = 10, ST <10 mm ) and group II (n = 10, ST equal to or> 20 mm). Negative correlation was observed between the 19 Hz, 28 Hz and 39 Hz frequency bands with ST. There was a statistical difference in almost all frequency bands, especially in the X and Y axes. All MMG axes in group II presented higher magnitudes in frequency bands 2 and 6 Hz (like low-pass filter). Thus, these results can be applied to calibrate MMG responses as biofeedback systems.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3