Abstract
The current research studies a fractal Duffing oscillator in the presence of periodic force. To find an analytic solution for this oscillator, the aspects explained in the following are considered. First, we obtain an alternative unforced fractal fourth-order equation and then convert it into a continuous space. Therefore, the non-perturbative (NP) approach is used to calculate the analytic solution for the alternate equation in the second-order form after reducing its rank. It is seen that the analytical and numerical solutions agree very well. The computations reveal that for every value of the fraction parameter, the approximation and numerical solutions are identical. The present study gives reliability in the technique of reducing the order of differential equations. Furthermore, the required periodic solution is also obtained by Galerkin’s technique. In contrast to the traditional technique, which works to transform the variable and is valid only in the absence of external forces, if there is an external force, it leads to significant mathematical difficulties. The current technique works on the operator, which is simple and effective when investigating fractal oscillators with external forces, easy to obtain analytic solutions, and doesn't lead to any mathematical difficulties.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献