EVOLUTION OF THE CARBON NANOTUBE BUNDLE STRUCTURE UNDER BIAXIAL AND SHEAR STRAINS

Author:

Rysaeva Leysan Kh.ORCID,Bachurin Dmitry V.,Murzaev Ramil T.ORCID,Abdullina Dina U.ORCID,Korznikova Elena A.ORCID,Mulyukov Radik R.ORCID,Dmitriev Sergey V.ORCID

Abstract

Close packed carbon nanotube bundles are materials with highly deformable elements, for which unusual deformation mechanisms are expected. Structural evolution of the zigzag carbon nanotube bundle subjected to biaxial lateral compression with the subsequent shear straining is studied under plane strain conditions using the chain model with a reduced number of degrees of freedom. Biaxial compression results in bending of carbon nanotubes walls and formation of the characteristic pattern, when nanotube cross-sections are inclined in the opposite directions alternatively in the parallel close-packed rows. Subsequent shearing up to a certain shear strain leads to an appearance of shear bands and vortex-like displacements. Stress components and potential energy as the functions of shear strain for different values of the biaxial volumetric strain are analyzed in detail. A new mechanism of carbon nanotube bundle shear deformation through cooperative, vortex-like displacements of nanotube cross sections is reported.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Mobility of dislocations in carbon nanotube bundles;Materials Today Communications;2024-08

2. CARBON NANOTUBE UNDER PULSED PRESSURE;Facta Universitatis, Series: Mechanical Engineering;2024-07-31

3. Discrete breathers in a β-FPUT square lattice from in-band external driving;Communications in Nonlinear Science and Numerical Simulation;2024-05

4. Impact and post-impact of ring supports: Eigenfrequency response at nano-scale;STRUCT ENG MECH;2023

5. Critical pressure values for graphene membrane covering a slit;Physical Review B;2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3