Author:
Koparal Sibel,Ömür Neşe,Çolak Cemile Duygu
Abstract
In this paper, we derive sums and alternating sums of products of terms ofthe sequences $\left\{ g_{kn}\right\} $ and $\left\{ h_{kn}\right\} $ withbinomial coefficients. For example,\begin{eqnarray*} &\sum\limits_{i=0}^{n}\binom{n}{i}\left( -1\right) ^{i} \left(c^{2k}\left(-q\right) ^{k}+c^{k}v_{k}+1\right)^{-ai}h_{k\left( ai+b\right) }h_{k\left(ai+e\right) } \\ &=\left\{ \begin{array}{clc} -\Delta ^{\left( n+1\right) /2}g_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is odd,} & \\ \Delta ^{n/2}h_{k\left( an+b+e\right) }g_{ka}^{n}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{-an} & \text{if }n\text{ is even,} & \end{array}% \right.\end{eqnarray*}%and\begin{eqnarray*} &&\sum\limits_{i=0}^{n}\binom{n}{i}i^{\underline{m}}g_{k\left( n-ti\right) }h_{kti} \\ &&=2^{n-m}n^{\underline{m}}g_{kn}-n^{\underline{m}}\left( c^{2k}\left( -q\right) ^{k}+c^{k}v_{k}+1\right) ^{n\left( 1-t\right) }h_{kt}^{n-m}g_{k\left( tm+tn-n\right) },\end{eqnarray*}%where $a, b, e$ is any integer numbers, $c$ is nonzero real number and $m$is nonnegative integer.