PEAKFORCE QUANTITATIVE NANOMECHANICAL MAPPING FOR SURFACE ENERGY CHARACTERIZATION ON THE NANOSCALE: A MINI-REVIEW

Author:

Ha Heebo,Müller Sebastian,Baumann Roelf-Peter,Hwang Byungil

Abstract

Surface energy characterization is important to design the fabrication process of reliable electronic devices. Surface energy is influenced by various factors such as surface functionality and morphology. Owing to the high surface-to-volume ratio, surface energy at the nanoscale can be different from that of the bulk. However, the conventional methods for characterization of surface energy such as a sessile drop or Washburn methods cannot be used for nanoscale samples, owing to the limited volume for characterization. Recently, surface energy characterization on the nanoscale using atomic force microscopy (AFM) with Peak Force-Quantitative Nanomechanical Mapping (PF-QNM) imaging mode has been proposed. The nanoscale AFM tips measure the adhesion forces at the nanoscale, which are converted into surface energy through pre-calibrated curves. Successful surface energy characterization of nanoscale metal samples using AFM with the PF-QNM method has been reported previously. This mini-review discusses the recent progress on surface energy characterization at the nanoscale using AFM with the PF-QNM method. The fundamentals of the PF-QNM mode are introduced, and the results of surface energy characterization are summarized. Consequently, the future research direction for surface energy characterization at the nanoscale is discussed.

Publisher

University of Nis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3