MODELLING AND SIMULATION OF NONLINEAR DYNAMIC FLOW FIELD AND TEMPERATURE FIELD OF DEPYROGENATION TUNNEL

Author:

Wang Yizhi,Zhu Quanmin,Huang Tao,Han Xiaodong,Lin Min

Abstract

Nonlinear dynamics plays a crucial role particularly in equipment validation of preparation production, validation results of which will significantly influence the results and period of drug registration in drug production processes. In this research, the flow field and temperature field simulation, calculation and analysis are creatively carried out in terms of depyrogenation tunnel, a very popular preparation drying-sterilization equipment in pharmaceutical processes with strong dynamic characteristics. After construction of 3D model of this equipment using Catia and mesh generation applying ANSYS, the computational fluid dynamic (CFD) method and verification of irrelevance method are carried out regarding 6.05 million of meshes to identify the flow velocity model and heat transfer model inside the equipment, to further provide methodology for pharmaceutical process validation and to further optimize the design of control methods. After calculation and simulation, the low-velocity vortices of different sizes inside the hood and the drying chamber are identified, which could cause vials to fall down; meanwhile, vials that are farther away from the outlet receives less heat exchange effect, which would shrink the effective sterilization area, indicating an inadequate validation methodology in pharmaceutical processes.

Publisher

University of Nis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3