NUMERICAL SIMULATION OF DYNAMICS OF BLOCK MEDIA BY MOVABLE LATTICE AND MOVABLE AUTOMATA METHODS

Author:

Filippov Alexander E.,Popov Valentin L.

Abstract

Two versions of modified Burridge-Knopoff model including state dependent friction, elastic force and thermal conductivity are derived. The friction model describes a velocity weakening of friction and elasticity between moving blocks and an increase of both static friction and rigidity during stick periods as well their weakening during motion. It provides a simplified but qualitatively correct behavior including the transition from smooth sliding to stick-slip behavior, which is often observed in various tribological and tectonic systems. Attractor properties of the model dynamics is studied also. The alternative versions of the model are proposed which apply a simulation of the motion of interacting elastically connected mesh elements and motion of relatively large solid blocks, utilizing technique of the movable cellular automata. First version of the model was already basically studied before. Its advanced version here involves all components of the real system: state-depending friction and changeable rigidity, as well as heat production and thermal conductivity. Model based on the movable automata also involves the components included into traditional lattice model. It has its own ad-vantages and disadvantages which are also discussed in the paper.

Publisher

University of Nis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3