A STUDY ON GROSS SLIP AND FRETTING WEAR OF CONTACTS INVOLVING A POWER-LAW GRADED ELASTIC HALF-SPACE

Author:

Hess Markus

Abstract

For the steady wear state of two contact problems involving power-law graded materials, closed-form solutions are derived in terms of pressure distribution and limiting shapes of profile. Both gross slip of an initially flat-ended cylindrical punch on a power-law graded half-space and the load-controlled fretting wear under partial slip of an initially parabolic indenter are studied. In the case of gross slip at fixed penetration depth there exists a certain exponent of elastic inhomogeneity, for which the effective volume change takes its maximum value. To minimize wear due to fretting under partial slip, an amplitude dependent design of the material gradient is necessary. For large amplitudes of the tangential force a gradient ranged from a soft surface to a hard ground is beneficial, small amplitudes require a reverse gradient characterized by a hard surface and a soft ground. However, the choice of the material gradient also has a decisive influence on the strength of stress singularities at the contact edge and thus the initiation of fretting fatigue cracks, which is why it is discussed in more detail.

Publisher

University of Nis

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3