Abstract
The paper investigates a non-fragile robust control strategy for a half-car active suspension system considering human-body dynamics. A 4-DoF uncertain vibration model of the driver’s body is combined with the car’s model in order to make the controller design procedure more accurate. The desired controller is obtained by solving a linear matrix inequality formulation. Then the performance of the active suspension system with the designed controller is compared to the passive one in both frequency and time domain simulations. Finally, the effect of the controller gain variations on the closed-loop system performance is investigated numerically.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献