Author:
Ramakrishnan Krishnapuram Ravi,Chakraborty Shankar
Abstract
Due to stringent governmental regulations and increasing consciousness of the customers, the present day manufacturing organizations are continuously striving to engage green suppliers in their supply chain management systems. Selection of the most efficient green supplier is now not only dependant on the conventional evaluation criteria but it also includes various other sustainable parameters. This selection process has already been identified as a typical multi-criteria group decision-making task involving subjective judgments of different participating experts. In this paper, a green supplier selection problem for an automobile industry is solved while integrating the Cloud model with the technique for order of preference by similarity to an ideal solution (TOPSIS). The adopted method is capable of dealing with both fuzziness and randomness present in the human cognition process while appraising performance of the alternative green suppliers with respect to various evaluation criteria. This model identifies green supplier S4 as the best choice. The derived ranking results using the adopted model closely match with those obtained from other variants of the TOPSIS method. The Cloud model can efficiently take into account both fuzziness and randomness in a qualitative attribute, and effectively reconstruct the qualitative attribute into the corresponding quantitative score for effective evaluation and appraisal of the considered green suppliers. Comparison of the derived ranking results with other MCDM techniques proves applicability, potentiality and solution accuracy of the Cloud TOPSIS model for the green supplier selection.
Subject
Industrial and Manufacturing Engineering,Polymers and Plastics,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering
Cited by
63 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献