Potential of Curcuma xanthorrhiza ethanol extract in inhibiting the growth of T47D breast cancer cell line: In vitro and bioinformatic approach

Author:

Fitriana Nur,Rifa’i Muhaimin,Masruri Masruri,Wicaksono Septian Tri,Widodo NashiORCID

Abstract

Context: Breast cancer most commonly occurs in women globally and has the highest mortality rate in Asia. Therefore, a safe and prominent drug to cure the disease needs to be urgently developed. Aims: To investigate the molecular mechanism of the ethanol extract of Curcuma xanthorrhiza (ECx) in inducing apoptosis in breast cancer cell line T47D. Methods: The research was started by extracting Curcuma xanthorrhiza using ethanol as solvent. The anticancer research was carried out by cell toxicity assay and apoptosis assay. This study also observed changes in cell morphology and protein expression levels that can induce cell apoptosis. The bioinformatics approach was carried out to determine the activity of the active compound in inhibiting AKT-1, which plays an important role in the development of cancer cells. TIG-1 cells were used as controls in toxicity assays. Results: ECx showed antioxidant and nitric oxide scavenging activity, which is beneficial for human health, and exhibited selective toxicity in T47D breast cancer cells compared to TIG-1 normal cells. ECx increased the expression of p53, Bax, caspase-3, and caspase-9, which induces apoptosis. Further analysis showed that ECx contained at least eight active compounds: curcumin, curcumin II (desmethoxycurcumin), curcumene, camphor, 1,8-cineole, p-cymene, ar-turmerone, and caryophyllene oxide. Bioinformatics studies suggest that active compounds may be involved in apoptosis via the PI3K/AKT signaling pathway. Conclusions: ECx significantly acts as an anticancer agent by inhibiting the growth of T47D cells. This research proves that the bioinformatics approach shows that curcumin can inhibit the expression of AKT-1.

Publisher

Garval Editorial Ltda.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Pharmacy,Complementary and alternative medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3