Molecular docking and dynamics studies of 8,9-dimethoxy ellagic acid contained in Peperomia pellucida (L.) Kunth against various diabetes mellitus receptors

Author:

Susilawati YasmiwarORCID,Indradi Raden BayuORCID,Asnawi AiyiORCID,Febrina EllinORCID

Abstract

Context: The search for antidiabetic drugs that target the receptors involved in diabetes has received significant attention in recent years. Peperomia pellucida (L.) Kunth's ethanol extract and ethyl acetate fraction have antihyperglycemic activity. 8,9-dimethoxy ellagic acid (DEA) has shown significant diabetes mellitus activity in mice, but its interaction with diabetes receptors remains unknown. Aims: To perform molecular docking and molecular dynamics simulations to explore the binding interactions and stability of DEA within the binding sites of enzymes involved in diabetes. Methods: At the outset, the utilization of molecular docking was limited to forecasting the DEA's binding orientations and affinities within the active sites of the enzymes implicated in diabetes. Following this, molecular dynamics simulation was employed to investigate the interactions, stability, and dynamic behavior of these complexes over a period of 100 nanoseconds. Results: Molecular docking results revealed that DEA interacts with all selected receptors involved in diabetes and interacts more strongly with the aldose reductase receptor (PDB ID 3S3G) than the native ligand, with a binding energy of -10.3 kcal/mol. However, further molecular dynamics simulations confirmed the stability of the receptor complex with DEA over 100 ns, which is less potent than that of the native ligand. This is probably due to the rigidity of the DEA molecular structure. Conclusions: This study highlights the potential of DEA derived from P. pellucida as an inhibitor of various receptors involved in diabetes.

Publisher

Garval Editorial Ltda.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3