Analgesic effect of neohesperidin is mediated by TRPV1 antagonism

Author:

Abdulwahed Omar A.,Al-Najjar Belal O.,Abbas Manal A.ORCID,Alsalem Mohammad

Abstract

Context: Transient receptor potential vanilloid type 1 (TRPV1) is a non-specific cation channel. It is one of the most important targets in pain research. Aims: To evaluate new TRPV1 antagonists without altering body temperature. Methods: Docking simulation was performed, and one of the candidate compounds, neohesperidin, was tested using thermal and chemical pain models in BALB/c mice. Rectal body temperature was measured using a temperature meter with a thermocouple probe detector, and the capsaicin-evoked calcium response was determined in dorsal root ganglia (DRG) neurons. Results: Docking resulted in the identification of 30 compounds able to interact with the essential amino acids required for the antagonistic activity of TRPV1. Neohesperidin was chosen for further investigations because of its good binding energy (-6.63 kcal/mol) and because its TRPV1 antagonistic activity was not tested before. This study reported for the first time that neohesperidin exerted analgesic activity through TRPV1 antagonism without altering body temperature. Its activity was comparable to the known TRPV1 antagonist N-(4-tertiarybutylphenyl)-4-(3-chloropyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC). In the writhing test, acetic acid-induced abdominal cramps decreased by 66% using 30 mg/kg of neohesperidin. All tested doses of neohesperidin significantly decreased paw-licking time in the capsaicin-induced paw-licking test. A significant increase in the latency time in hot plate and tail flick tests was observed using 30 and 60 mg/kg of neohesperidin. In DRG neurons, neohesperidin reduced capsaicin-evoked calcium responses. Conclusions: Neohesperidin exerts a significant analgesic activity without altering body temperature, which could be due, at least partially, to its antagonistic activity against TRPV1.

Publisher

Garval Editorial Ltda.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Pharmacy,Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3