Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins

Author:

Widyananda Muhammad Hermawan,Pratama Setyaki Kevin,Samoedra Rizky Senna,Sari Fikriya Novita,Kharisma Viol Dhea,Ansori Arif Nur Muhammad,Antonius Yulanda

Abstract

Context: Lung cancer is a type of cancer that causes the most deaths worldwide. The most common type of lung cancer is non-small cell lung cancer (NSCLC). Sea urchin (Arbacia lixula) has high potential as an anti-NSCLC agent. Aims: To analyze the anticancer activity of peptides from A. lixula coelomic fluid in inhibiting the activity of NSCLC-related proteins. Methods: Peptide modeling was performed using the PEP-FOLD3 web server. Proteins that have a crucial role in NSCLC progression were determined using KEGG pathway database. 3D protein structures such as EGFR, PI3K, BRAF V600E, and JAK3 were taken from the RCSB PDB database. Docking was performed using Autodock Vina software. Docking results analysis was carried out using Discovery Studio 2019 software. Results: Some peptides bind to the active sites with low binding affinity. Peptide 10 binds to the active site of the EGFR with a binding affinity of -9 kcal/mol. Peptide 5 binds to the active sites of PI3K and BRAF V600E with binding affinity of -8.2 and -8.1 kcal/mol, respectively. Peptide 11 binds to the active site of JAK3 with a binding affinity of -8.1 kcal/mol. All of these peptides have lower binding affinity than ATP as the native ligand. Besides, these peptides also produce more hydrogen bonds than ATP, so they are predicted to be more stable. Conclusions: Peptides 10, 5, and 11 have high potential as anti-NSCLC agents because they can inhibit the activity of proteins that play an essential role in the growth of NSCLC, namely EGFR, PI3K, BRAF V600E, and JAK3 through the competitive ATP inhibitor mechanism.

Publisher

Garval Editorial Ltda.

Subject

Drug Discovery,Pharmaceutical Science,Pharmacology,Pharmacy,Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3