Predictive accuracy of option pricing models considering high-frequency data

Author:

Arnerić Josip1ORCID,Čuljak Maria2ORCID

Affiliation:

1. University of Zagreb, Faculty of Economics & Business

2. Croatian Financial Services Supervisory Agency

Abstract

Purpose: Recently, considerable attention has been given to forecasting, not only the mean and the variance, but also the entire probability density function (pdf) of the underlying asset. These forecasts can be obtained as implied moments of future distribution originating from European call and put options. However, the predictive accuracy of option pricing models is not so well established. With this in mind, this research aims to identify the model that predicts the entire pdf most accurately when compared to the ex-post “true” density given by high-frequency data at expiration date. Methodology: The methodological part includes two steps. In the first step, several probability density functions are estimated using different option pricing models, considering the values of major market indices with different maturities. These implied probability density functions are risk neutral. In the second step, the implied pdfs are compared against the “true” density obtained from the high-frequency data to examine which one gives the best fit out-of-sample. Results: The results support the idea that a “true” density function, although unknown, can be estimated by employing the kernel estimator within high-frequency data and adjusted for risk preferences. Conclusion: The main conclusion is that the Shimko model outperforms the Mixture Log-Normal model as well as the Edgeworth expansion model in terms of out-of-sample forecasting accuracy. This study contributes to the existing body of research by: i) establishing the benchmark of the “true” density function using high-frequency data, ii) determining the predictive accuracy of the option pricing models and iii) providing applicative results both for market participants and public authorities.

Publisher

Ekonomski fakultet u Osijeku

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3