Affiliation:
1. Scientific Research Institute Scientific Industrial Association «LUCH», Podolsk
Abstract
The second part of the analytical review considers in detail an adaptive filtering application in the systems of adaptive optical systems (AOS) from the perspective of the airborne laser platforms. Herein the AOS operates under aero-optical distortions and vibrations, which further complicate the propagation of the laser beam. Adaptive filtering is considered as a way to improve the efficiency of the control system of adaptive optical systems, allowing to improve running an adaptive optics control loop: by 1.5-2 times with compensation for only the aero-optical disturbances, by 1.5 times with compensation only for the free-stream turbulence, and by 2.5-3.5 times for the combination of aero-optics and free-stream turbulence.The article discusses implementation of a new type of the controller, which uses intellectual algorithms to predict (through an artificial neural network) a short-term horizon of evolution of aberrations due to aero-optical effect. This controller allows us to deal with a large time delay in signal transmission (up to 5 time steps of sampling).The application of two deformable mirrors in the adaptive optical system to provide control at the spaced frequencies is especially considered. A low-frequency mirror is used to correct the lower-order aberrations (tip-tilt, defocusing, astigmatism, coma) requiring large strokes of executive mechanisms (actuators) in the deformable mirror. A high-frequency mirror is used to correct the higher-order aberrations requiring small strokes of drives. Various control algorithms to control the system from two adaptive mirrors are briefly reviewed.The obtained results, conclusions, and recommendations are supposedly to be used in development of specification of requirements for systems of adaptive optics.
Subject
General Earth and Planetary Sciences,General Environmental Science