Kinetic Methods for Solving Unsteady Problems with Jet Flows

Author:

Frolova A. A.1,Titarev V. A.1

Affiliation:

1. Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences, Moscow

Abstract

The study of nonstationary rarefied gas flows is currently paid much attention. Such interest to these problems is caused by the creation of pulsed jets used for the deposition of thin films and special coatings on solid surfaces. However the problems of nonstationary rarefied gas flows have not been studied sufficiently fully because of their large computational complexity. In this paper the computational aspects of investigating the nonstationary flows of a reflected gas from a wall and flowing through a suddenly formed gap is considering. The objective of this study is to analyze the possible numerical kinetic approaches for solving such nonstationary problems and to identify the difficulties encountered in solving.When studying the gas flows in strong rarefaction regimes one should consider the Boltzmann kinetic equation, but its numerical implementation is rather laborious. In order  to use more simple approaches based for example on approximation kinetic equations (Ellipsoidal-Statistical model,  Shakhov model), it is important to estimate the difference of the solutions of the model equations and the Boltzmann equation. For this purpose two auxiliary problems are considered: reflection of the gas flow from the wall and outflow of the free jet into the rarefied background gas. Numerical solution of these problems shows a weak dependence of the solution on the type of the collision operator in the rarefied region, but a strong dependence on the velocity grid step . The detailed velocity grid is necessary to avoid non-monotonous behavior of macroparameters caused by the “ray effect”. To reduce numerical costs on detailed grid a hybrid method based on the synthesis of model equation and the Boltzmann equation is proposed. Such approach can be promising since it reduces the domain in which the Boltzmann collision integral should be used.The results presented in this paper were obtained using two different software packages Unified Flow Solver (UFS) [13] and Nesvetay 3D [14-15]. Note that UFS uses the discrete ordinate method for velocity space on a uniform grid and a hierarchical adaptive mesh refinement in physical space.  The possibility of calculating both the Boltzmann equation and model equations is realized. The Nesvetay 3D complex was created to solve the Shakhov model equation, (S-model)  and makes it possible to calculate on non-structured non uniform grids in velocity and  physical spaces.Translated from Russian. Original text: Mathematics and Mathematical Modeling. 2018. no. 4. Pp. 27-44.

Publisher

NPG Publishing

Subject

General Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3